Transcallosal inhibition in patients with callosal infarction.

نویسندگان

  • Jie-Yuan Li
  • Ping-Hong Lai
  • Robert Chen
چکیده

Recent studies in normal subjects suggested that callosal motor fibers pass through the posterior body of the corpus callosum (CC), but this has not been tested in patients with callosal infarction. The objective of this study is to define the pathways involved in transcallosal inhibition by examining patients with infarctions in different subregions of the CC. We hypothesized that patients with lesions in the posterior one-half of the CC would have greater reduction in transcallosal inhibition between the motor cortices. Twenty-six patients with callosal infarction and 14 healthy subjects were studied. The callosal lesions were localized on sagittal MRI and were attributed to one of five segments of the CC. Transcranial magnetic stimulation was used to assess ipsilateral silent period (iSP) and short- and long-latency interhemispheric inhibition (SIHI and LIHI, respectively) originating from both motor cortices. The results showed that the iSP areas and durations were markedly reduced bilaterally in patients with callosal infarction compared with normal subjects. Patients with callosal infarctions also had less IHI bidirectionally compared with normal subjects. iSP areas and durations were lower in patients with lesions than in patients without lesions in segment 3 (posterior midbody) of the CC. Lesion burden in the posterior one-half of the CC negatively correlated transcallosal inhibition measured with iSP and SIHI. Our study suggests that callosal infarction led to reduced transcallosal inhibition, as measured by iSP, SIHI, and LIHI. Fibers mediating transcallosal inhibition cross the CC mainly in the posterior one-half.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in callosal motor fiber integrity after subcortical stroke of the pyramidal tract.

In the healthy brain, there are close correlations between task-related activation of the primary motor cortex (M1), the magnitude of interhemispheric inhibition, and microstructural properties of transcallosal fiber tracts. After subcortical stroke affecting the pyramidal tract (PT), an abnormal pattern of bilateral activity develops in M1. With this prospective longitudinal study, we aimed to...

متن کامل

Transcallosal sensorimotor fiber tract structure-function relationships.

Recent studies have demonstrated neuroanatomically selective relationships among white matter tract microstructure, physiological function, and task performance. Such findings suggest that the microstructure of transcallosal motor fibers may reflect the capacity for interhemispheric inhibition between the primary motor cortices, although full characterization of the transcallosal inhibitory sen...

متن کامل

Speed-dependent contribution of callosal pathways to ipsilateral movements.

Transcallosal inhibitory interactions between primary motor cortices are important to suppress unintended movements in a resting limb during voluntary activation of the contralateral limb. The functional contribution of transcallosal inhibition targeting the voluntary active limb remains unknown. Using transcranial magnetic stimulation, we examined transcallosal inhibition [by measuring interhe...

متن کامل

Corpus callosum and experimental stroke: studies in callosotomized rats and acallosal mice.

BACKGROUND AND PURPOSE Interhemispheric inhibition via the corpus callosum has been proposed as an exacerbating factor in outcome from stroke. METHODS We measured infarct volume and behavioral outcome after middle cerebral artery occlusion in callosotomized rats and acallosal mice. RESULTS Neither callosotomy in rats nor callosal agenesis in mice improved infarct volume or behavioral outcom...

متن کامل

The right inhibition? Callosal correlates of hand performance in healthy children and adolescents callosal correlates of hand performance.

Numerous studies suggest that interhemispheric inhibition-relayed via the corpus callosum-plays an important role in unilateral hand motions. Interestingly, transcallosal inhibition appears to be indicative of a strong laterality effect, where generally the dominant hemisphere exerts inhibition on the nondominant one. These effects have been largely identified through functional studies in adul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 109 3  شماره 

صفحات  -

تاریخ انتشار 2013